Weekly Research Newsletter - KIIT

By Priyansi, Junaid Rahim and Biswaroop Bhattacharjee

Weekly Research Newsletter - KIIT - Issue #10

#10・
Weekly Research Newsletter - KIIT
430

subscribers

18

issues

Weekly Research Newsletter - KIIT - Issue #10
17th April 2021,
We are excited to share this week’s picks for the research newsletter. We hope you’ll enjoy reading them over the weekend.

Towards General Purpose Vision Systems
By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, Derek Hoiem
A special purpose learning system assumes knowledge of admissible tasks at design time. Adapting such a system to unforeseen tasks requires architecture manipulation such as adding an output head for each new task or dataset. In this work, we propose a task-agnostic vision-language system that accepts an image and a natural language task description and outputs bounding boxes, confidences, and text. The system supports a wide range of vision tasks such as classification, localization, question answering, captioning, and more. We evaluate the system’s ability to learn multiple skills simultaneously, to perform tasks with novel skill-concept combinations, and to learn new skills efficiently and without forgetting.
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort
By Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela Barriuso, Antonio Torralba, Sanja Fidler
We introduce DatasetGAN: an automatic procedure to generate massive datasets of high-quality semantically segmented images requiring minimal human effort. Current deep networks are extremely data-hungry, benefiting from training on large-scale datasets, which are time consuming to annotate. Our method relies on the power of recent GANs to generate realistic images. We show how the GAN latent code can be decoded to produce a semantic segmentation of the image. Training the decoder only needs a few labeled examples to generalize to the rest of the latent space, resulting in an infinite annotated dataset generator! These generated datasets can then be used for training any computer vision architecture just as real datasets are. As only a few images need to be manually segmented, it becomes possible to annotate images in extreme detail and generate datasets with rich object and part segmentations. To showcase the power of our approach, we generated datasets for 7 image segmentation tasks which include pixel-level labels for 34 human face parts, and 32 car parts. Our approach outperforms all semi-supervised baselines significantly and is on par with fully supervised methods, which in some cases require as much as 100x more annotated data as our method.
Did you enjoy this issue?
Priyansi, Junaid Rahim and Biswaroop Bhattacharjee

An opt-in weekly newsletter for the undergraduate research enthusiasts in KIIT. We intend to share interesting research articles and start conversations about the latest ideas in artificial intelligence, computer science and mathematics.

Every Friday, all subscribers will receive some research articles straight in their inbox. The papers will usually be a mix of that week’s popular research articles, review articles and some seminal papers in the various fields mentioned above.

In order to unsubscribe, click here.
If you were forwarded this newsletter and you like it, you can subscribe here.
Powered by Revue